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Abstract

Our work explores several modeling challenges pre-
sented by the application of Mamba, or selective state space
models, to the multimodal classification problem of identi-
fying hateful memes. The existing baselines and best per-
forming models on the problem all leverage transformer
backbones, which have computational and memory require-
ments that are quadratic with respect to sequence length. In
contrast, Mamba architectures offer linear scaling of com-
putation and memory during sequence modeling. We inte-
grate a foundational Mamba model pretrained on text and
a new Mamba variant, VMamba, pretrained on images, in a
variety of architectures aimed at the hateful memes classifi-
cation problem. In our experiments, we focus exclusively on
accuracy and AUC as our metrics of choice, excluding com-
putational and memory comparisons to benchmark models
due to compute constraints. Setting aside model ensembles
that achieve SoTA performance, we find that our text-only
and multimodal models perform slightly worse than their
transformer counterparts, while our image-only model per-
forms better than its ResNet-based counterparts.

1. Introduction/Background/Motivation

1.1. The Hateful Memes Challenge

Our goal is to classify multimodal hateful memes us-
ing the novel architecture, selective state space models, also
known as Mamba. Teasing out the meaning of a multimodal
meme requires subtle reasoning and integration of semantic
clues from both the image and text, making it a strong data
source to test out the multimodal fine-tuning capabilities
of text and image models. Classifying multimodal content
(hate speech, LLM-generated, etc.) also grows more impor-
tant each day as the ability to generate undesirable content
is made easier by constantly improving deep learning tools.

The Mamba architecture is designed to model sequences
much longer than traditional transformers can handle due
to their quadratic time and memory complexity with re-

spect to sequence length. On a variety of language mod-
eling and long-range benchmarks, Mamba has performed
comparable to or better than strong transformer recipes of
similar size [9]. Given that transformer models have come
to dominate almost all deep learning tasks, we explore the
broad applicability of a model framework, Mamba, that op-
erates in linear time complexity. The specification of the
hateful memes classification problem doesn’t necessarily
play to all of the studied advantages of Mamba (e.g., long-
range dependencies), but we nonetheless are interested in
the model’s performance given a variety of modeling chal-
lenges that aren’t yet well studied: (a) applying Mamba to
discriminative tasks, (b) fine-tuning Mamba, and (c) adapt-
ing Mamba to the multimodal context.

Our goal is compare the accuracy of models using
Mamba backbones to similar unimodal and multimodal
baselines highlighted in [16]. Due to compute constraints,
we won’t dive into time complexity comparisons between
benchmarks and our models as that would involve rerun-
ning the benchmarks. We also don’t expect to compete with
the best performance achieved on the dataset, given that
SoTA approaches tend to ensemble results from a variety
of models for stability [4]. We did not perform ensemble
experiments given the same compute constraints previously
mentioned.

The Hateful Memes dataset was curated by the FAIR
team at Meta from various internet forums and social media
sites [16]. To overcome licensing issues, FAIR had human
annotators study the source material and create derivative
memes. The dataset contains over 10,000 data samples of
these derivative memes, open-sourced for further research
against hate speech identification. Each sample contains
the image file and its extracted text caption. Note that we
further masked out the text captions in each image and in-
painted the results using OpenCV (more sophisticated deep
learning inpainters are also available, but weren’t used) as
suggested by the Hateful Memes Challenge winners. Fi-
nally, each meme has a binary label indicating whether its
content is hateful or not. See examples in Figure 1 for the
semantic nuance across modalities that makes a meme hate-
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ful.

1.2. Current approaches

Traditional methods of hate speech identification often
rely on text-based data and in recent years, transformer-
based encoders like BERT [3] have become the SoTA NLP
models known for their ability to comprehend context and
semantics within textual data. Furthermore, the seman-
tic relationships that can exist between text and image in
multimodal data has led to the development of multimodal
models such as BERT+ResNet [3, 13] or VisualBERT [17]
where features from images and text interact through a
cross-attention mechanism. The best-in-class performances
of the dataset are all derived from foundational models with
transformer backbones. Multiple foundational models are
usually ensembled to drive the best performance.

Existing limitations of transformers largely tie to the
quadratic time and memory complexity of the attention
mechanism with respect to sequence length. Pairwise
attention must be computed between each input token
in the sequence. As a result, transformers struggle
with long-range time dependencies, but also suffer from
computationally intensive training and inference more
broadly. In addition, the positional encoding of tokens can
inadvertently affect the accuracy of information traveling
through the model and this becomes an evident issue for
domain-specific language tasks.

1.3. Applying Selective State Space Models
(Mamba)

Mamba presents an alternative approach to modeling se-
quences that provides computational benefits and maintains
longer-range time dependencies in the data. It innovates
on its predecessor, S4, a sequence-to-sequence model [12].
S4 projects a 1-dimensional signal, x(t) to a 1-dimensional
output y(t) via an n-dimensional hidden state, h(t). h(t)
is formulated as a polynomial approximation of the en-
tire signal history at a given time step t. The hidden state
and output are defined via the differential equations below
(1a,1b), where A,B,C,D are learnable time-invariant ma-
trices. Further structure is imposed on A as described in
[11]. D is a trivial skip connection.

h(t) = Ah(t) +Bx(t) (1a)
y(t) = Ch(t) +Dx(t) (1b)

While not covered in detail here, an additional time-
invariant parameter ∆ helps transform continuous parame-
ters A,B to discrete parameters A,B. This results in equa-
tion 2a and 2b:

(a) Hateful.

(b) Not hateful.

Figure 1: Examples of memes from the dataset.



Figure 2: Baseline Mamba module

ht = Aht−1 +Bxt (2a)
yt = Cht +Dxt (2b)

Through some algebraic conveniences, this model struc-
ture allows the output y(t) to be computed as a global con-
volution during training, bypassing the time-complexity of
computing the hidden state h(t), while still allowing recur-
rent computation during inference. However, whereas an
attention mechanism doesn’t compress memory at all and
results in in a quadratic time complexity with respect to se-
quence length, S4 sacrifices any form of selective memory
to achieve its linear time complexity. S4 instead compresses
the memory with respect to the same measure throughout
the sequence.

To give S4 more flexibility, Mamba implements a se-
lective scan mechanism [9]. Matrices B,C and parameter
∆ are re-parameterized as functions of the input xt, rather
than as time-invariant. Though y(t) can no longer be com-
puted via global convolution, further hardware-aware algo-
rithm improvements are made to recover the linear time-
complexity benefits of S4. The final Mamba module is vi-
sualized in Figure 2. The module is a merger between an
H3 module [7] and a standard MLP. The language-based
Mamba model in our experiments is pretrained on the Pile
dataset [8] and available publicly on Github [10].

Notably, Mamba is designed for unidirectional se-
quences, making text data a strong fit for its modeling ca-
pabilities. However, image data has no inherent direction in
its 2D input, meaning that adaptations to Mamba are needed
to process images for modeling tasks. Research on apply-
ing Mamba to image data is still in its early stages, but we

Figure 3: Comparing Attention and Cross-Scan

test a publicly available image encoder, VMamba, which is
pretrained on ImageNet [5]. VMamba adapts the Mamba
module to image data through its 2D-selective-scan mech-
anism, Cross-Scan [18]. Cross-Scan traverses the image
patches in 4 different ways (see figure 2): (1) starting from
the top left corner, traversing left to right, (2) top left cor-
ner, top to bottom, (3) bottom right corner, right to left, and
(4) bottom right corner, bottom to top. Whereas attention
computes pair-wise attention between each patch, VMamba
breaks down the patches into four sequences which are
then passed into separate Mamba modules, and finally re-
constructed into an output map. This maintains the linear
time complexity of processing sequences while still allow-
ing each pixel to learn from all others in the image. In addi-
tion, given the sequence length of images, we should benefit
from Mamba’s ability to model long-range dependencies.

Armed with pretrained Mamba modules trained on text
and image, we can now specify the custom Mamba archi-
tectures we’ve designed to tackle the hateful memes classi-
fication problem.

2. Approach

2.1. Architecture

We tested 4 total architecture backbones inspired by the
benchmarks in the original paper. First, we fine-tuned a
single-directional Mamba pre-trained on language genera-
tion tasks named TextMamba. Second, based on the stan-
dardized practice of using bi-drectional sequential models
(such as with RNNs and LSTMs) on classification tasks,
we fine-tuned a bi-directional Mamba model named BiD-
TextMamba. Third we leveraged a pre-trained vison-based
Mamba architecture, VMamba, as an image encoder, la-
beled ImageMamba. Finally, we concatenated hidden
states from TextMamba and ImageMamba to form Concat-



Mamba. See Section 1.3 (or the readme in our attached
code) for more details on the pretrained Mamba modules
used in our architectures and other code samples we used.

While there hasn’t been rigorous testing on the best way
to design a classifier head for state space models to our
knowledge, we can leverage successful methods applied to
prior popularized sequential models (RNNs, LSTMs). For
all four models, we mean-pooled output states to pass to the
classifier head. The classifier head for our four models con-
sisted of two linear layers connected by a ReLU activation,
and a final sigmoid activation to generate class probabilities.
While transformer-based foundational models typically do
not include non-linear activation layers in their classifica-
tion head, we found it mildly improved performance while
testing our models. However, adding greater depth and
complexity to the MLP tended to overfit the model so we
kept the structure fairly simple, reducing the pooled output
state to 64 dimensions before passing through a ReLU and
running the data through a classifier layer.

2.2. Training design

Fine-tuning Mamba models also lacks a robust literature.
Without the compute to fully re-train our foundational mod-
els, we attempted to implement the Parameter Efficient Fine
Tuning (PEFT) framework, Low-Rank Adaptation (LoRA)
[15], where we freeze model parameters while introducing
a trainable low-rank approximation AB of each linear pro-
jection matrix W0 ∈ Rd×k in our model. The output of each
projection operation becomes h = W0x + BAx where we
tune the matrices B ∈ Rd×r and A ∈ Rr×k. BA is scaled
by α

r where α is a constant in r. We use default hyperpa-
rameters as specified in the LoRA configuration on Hugging
Face [6], such as r = 8 and α = 8. However, we increase
dropout to 0.1. Note that the default configuration leads to a
greater percentage of parameters trainable, although that is
partially driven by the difference in the rank hyperparame-
ter r (see Table 1). Bert uses values of r = 1, but we found
lowering our target rank to be detrimental. Given LoRA was
developed with Transformers in mind, a new tuning method
may be needed to work better with Mamba.

Model Parameters(M)
Trainable Total %

BERT 0.04 100 0.04%
TextMamba 4 375 1.06%

BiDTextMamba 8 751 1.06%
ImageMamba 1 89 1.51%

BiDConcatMamba 13 844 1.55%

Table 1: Trainable parameters under LoRA framework

We leveraged the hyperparameters in Table 2 for train-
ing. We specified a batch size of 32 based on the GPU
ram available to us. We also only needed a short sequence

Figure 4: Comparison of BERT and TextMamba training
runs

max length given the text in memes is typically a short se-
quence of words. Specifying the optimizer parameters was
difficult and ultimately we do not think our application of
LoRA may be the best way to fine-tune Mamba architec-
tures. Heuristically, what seemed to work best was choos-
ing a relatively high learning rate of 1e-3 that then is ex-
ponentially decayed by a gamma parameter of 0.8. How-
ever, no matter the configuration we tested, we found that
while training loss and accuracy steadily improved, the val-
idation loss and accuracy were extremely choppy across
Mamba architectures and hyperparameters. Even after low-
ering the learning rate significantly and adding weight de-
cay, we didn’t see much improvement. A sample chart for
one of TextMamba training runs is specified in Figure 3,
which we can compare to the much smoother BERT train-
ing run.

Our models still reached reasonable validation accuracy,
but given our focus is on applying Mamba models rather
than explicitly testing the procedures involved in fine-tuning
the model (optimization, architecture design for classifica-
tion, etc.), it is difficult to diagnose exactly what is causing
what appears to be overfitting of the data. Our best hypoth-
esis is that a better designed PEFT framework for Mamba
may limit the overfitting when fine-tuning Mamba and lead
to smoother training.

Batch size 32
Sequence max length 50 tokens

Epochs 20
Learning rate 1e-3

Gamma 0.8
Weight decay 1e-4

Sequence max length 50 tokens

Table 2: Training Hyperparameters

2.3. Uncertainties and challenges

There were a number of uncertainties in testing these ar-
chitectures. First, there have not been many reported re-
sults of fine-tuning Mamba models. A Kaggle challenge



around detecting long-form LLM-created text saw a partic-
ipant ensemble a text Mamba model with more traditional
transformer-based text encoders for the classification task,
but ultimately suffer in testing performance when includ-
ing the Mamba backbone [2]. As mentioned prior, given
compute constraints, we tried to implement the Parame-
ter Efficient Fine Tuning (PEFT) framework, LoRA, but
there hasn’t been empirical evidence that LoRA is the right
method to fine-tune Mamba architectures.

There also is not a prescribed design for the classifica-
tion head of Mamba models so we rely on mean-pooling
methods designed for other prior popularized models like
RNNs, LSTMs, and Transformers. The Mamba author sug-
gested a CLS token may also be productive [14], but this is
not something we tested.

Finally, there are only a few explorations of how Mamba
architectures are best set up in multimodal settings. One
paper suggests concatenating an image embedding from a
transformer encoder onto each text token embedding to be
fed into the Mamba backbone [22], but we did not ulti-
mately get to this. For our purposes, we tried a simple
concatenation of output states from separate text and image
Mamba models before feeding it into our classifier head.
However, it is unclear if concatenation offers the best inte-
gration of learning from multiple data modes.

3. Experiments and Results

As mentioned, we focused primarily on accuracy in our
application of Mamba and comparison against benchmarks.
Our final models were selected on the basis of best valida-
tion accuracy and then run on the test dataset. Note that
the hateful memes dataset has two different sets of valida-
tion and test data: ”seen” and ”unseen”. We leverage the
”seen” set which is what is used in the original paper [16].
The ”unseen” dataset is leveraged for the competition run
by Meta alongside the paper publication. Table 3 compares
our models in bold with the original benchmarks in italics.

Model Val. Test
Acc. AUC Acc. AUC

Unimodal BERT 0.58 0.65 0.63 0.69
(text) TextM. 0.58 0.59 0.59 0.62

BiDTextM. 0.56 0.61 0.58 0.64
Unimodal Img Grid 0.51 0.52 0.53 0.54
(image) Img Region 0.53 0.57 0.52 0.58

ImgM. 0.55 0.54 0.53 0.53
Multimodal Late Fusion 0.59 0.65 0.63 0.69
(unimodal CC BERT 0.59 0.66 0.62 0.68
training) CC M. 0.59 0.63 0.60 0.59

(multimodal VilBERT 0.66 0.73 0.66 0.75
training) Vis.BERT 0.66 0.74 0.69 0.75

Table 3: Model performance

Looking at our results, the first broad observation we can
make is that the testing set seems be a lot more similar to
the training set than our validation set. While there is not
necessarily a better metric to select our best model than val-
idation accuracy (or loss), it is a possibility that there is a
better model for our testing set in our training history. We
did not have the storage capabilities to test this.

Looking at the unimodal text-only results, we see that
Mamba performs as well as BERT on the validation set, but
does not translate as well to the test set. As mentioned, the
brevity of meme text does not necessarily emphasize the
long-range-dependency strength of the mamba model. In
addition, we are not sure of the empirical validity of the
LoRA PEFT framework we adapted. Finally, BERT and
our text Mamba are pre-trained on different text datasets.
To get a better comparison, we may want to pretrain both
architectures on the same text data. However, given all this
uncertainty, it is encouraging to see similar results in the
text modality, especially given the subtle semantic nuances
in hateful meme text.

One interesting result we see is that BiD TextMamba
didn’t necessarily perform as well on the dataset. While the
bidirectional model approach hasn’t been formally tested to
our knowledge, one possibility why it is not as productive
here is that the sequences are relativey short. Perhaps for a
paragraph or even larger body of text, the bidirectional in-
formation may provide more expressivity. But in our simple
use case, that expressivity may make it too easy to overfit
our data. A possible area for further exploration may be
to use lighter weight Mamba variants in the bidirectional
model.

It is also important to note that the text Mamba is de-
signed directly as a sequence-to-sequence model and does
not have the same encoder-decoder division that other pop-
ular deep learning models have. Hence, while we can use
Mamba as a way to generate text sequence embeddings, it
is likely going going to be much a much larger model and
more expressive by design than a text encoder like BERT.
Perhaps this difference is driving the overfitting that Mamba
seems to demonstrate off the bat, although, as discussed,
there are many other facets of our model design that still
leave room for improvement.

In the unimodal image-only setting, the Mamba results
are rather encouraging. The VMamba backbone outper-
forms the ResNet backbone baselines referenced in the pa-
per, likely due to the global receptive field for each pixel
and flexible Cross-Scan mechanism to facilitate deeper in-
tegration of features and longer-range dependencies in each
image. It would have been interesting to compare the results
of VMamba against a ViTransformer backbone to compare
the relative effectiveness of the selective scan against atten-
tion, but overall, the results are encouraging for Vmamba.



In the multimodal setting with unimodally trained mod-
ules, our models perform as well as benchmarks on the val-
idation set, but again do not translate as well to the test set.
Given the text and image modalities are trained indepen-
dently, it may be the worse inferential capabilities of our
text Mamba module (whose results similarly does not trans-
late as well to the test set) that weaken our results.

Note that we did not test any multimodally trained
Mamba benchmarks. While there are papers starting to
emerge that test the paradigm [22], we did not find a us-
able pretrained model for our tests and were beginning
to run past our set budget for compute. The concept of
multimodally trained Mamba is still in question as there
isn’t a clean analogy for the cross-attention mechanism
that is leveraged in models like VilBERT and VisualBERT
[19, 17]. The primary suggestion to date has been to use an
image encoder (e.g., ViT, VMamba) to produce image em-
beddings which are then concatenated onto each text token
that is fed into the Mamba module.

4. Conclusion
Our research aimed to explore the application of Mamba-

based models in the classification of hateful memes, specifi-
cally leveraging the computational efficiently of linear com-
plexity and potential for handling long-range dependencies
of Mamba architectures (in contrast to the quadratic com-
plexity of existing traditional transformer-based models).

In conclusion, we observe promising results from our
Mamba-based approaches to the Hateful Memes challenge,
though we do not obtain any particularly impressive results
with respect to the given baselines.

In particular, we observe that although Mamba-based
models can perform comparably to the transformer mod-
els given unimodal settings (especially regarding text-data),
there is not a consistent outperformance in comparison to
the existing benchmarks given multimodel contexts. More-
over examining the text-specific and image-specific Mamba
models, we saw a similar validation accuracy to the BERT
models with a slight dip in accuracy performance on the
testing dataset for the text-specific Mamba model, and in
terms of the image-only VMamba model, there was an ob-
served outperformance in comparison to the ResNet-based
models. Discrepancies to our inital inferences were seen in
the bidirectional Mamba model which did not yield accu-
racy improvement as initially anticipated (however as pre-
viously menttioned, this may be due to the lack of longevity
in sequence length in mem text which consequently does
not take advantage of the gains in bidirectional process-
ing). It was also seen that our attempt at conglomerating the
text and image features did not result in our model surpass-
ing the accuracy performance of the traditional transformer-
based models (which may simply be akin to hurdles in mul-
timodel integration in existing Mamba architectures).

As for improvements to this work, we emphasize that
future work solve the issue of overfitting on the dataset
by either freezing more parameters or developing a PEFT
framework specifically for Mamba, the latter being more
broadly applicable to more general research thrusts. More-
over, in the absence of a compute bottleneck, we encour-
age the finetuning of a multimodally-pretrained visual ques-
tion answering Mamba model, such as VL-Mamba or Cobra
[20, 22], to detect whether memes are hateful. While both of
these models are designed to give text responses to a given
prompt, we suspect that the LLM final layer can be replaced
with a Linear (or similar) layer whose weights are finetuned
to classify a meme as hateful or not. to a multimodal prompt
of a meme and the text “Is this meme mean?”.

Moreover, we feel it may be an interesting task to vi-
sualize both the salient regions of input meme images and
salient words in input meme text to analyze where the mod-
els we evaluate in this paper place their “focus” when classi-
fying a meme as hateful or not. For this reason, we suggest
the application of Grad-CAM [21] or the methods proposed
in [1] to the models we propose in this paper to further
assess the performance, from an explainability standpoint,
of Mamba-based methods versus the previous benchmark
models.
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