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What is a Diophantine Equation?
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What is a Diophantine Equation?

Definition (Diophantine Equation)

A diophantine equation is an equation whose only solutions of interest
are integers.

Examples

x3 − y3 = xy + 2

xn + yn = zn, for some n ∈ Z+

1
x + 1

y + 1
z = 1

n , for some integer n

u2 − Dv2 = 1, for some integer D
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The Decomposition Method The Modular Arithmetic Method Pell’s Type Equations

Decomposition Method

Example

Solve in integers the equation x2 + 6xy + 8y 2 + 3x + 6y = 2.

We first factor:

x2 + 6xy + 8y 2 + 3x + 6y

= (x + 2y)(x + 4y) + 3(x + 2y)

= (x + 2y)(x + 4y + 3) = 2

If 2 = ab, then (a, b) can be (1, 2), (2, 1), (−1,−2), or (−2,−1).
We get four systems:{

x + 2y = 1
x + 4y + 3 = 2

;

{
x + 2y = 2
x + 4y + 3 = 1{

x + 2y = −1
x + 4y + 3 = −2

;

{
x + 2y = −2
x + 4y + 3 = −1

Solutions: {(3,−1), (6,−2), (3,−2), (0,−1)}.
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The Decomposition Method The Modular Arithmetic Method Pell’s Type Equations

Modular Arithmetic Method

Example

Solve in integers the equation x3 + y4 = 7.

Consider the equation mod 13.

Since x3 mod 13 = (x mod 13)3 mod 13, it follows that
x3 ≡ 0, 1, 5, 8, 12 (mod 13).

Similarly, y4 mod 14 = (y mod 13)4 mod 13, so y4 ≡ 0, 1, 3, 9
(mod 13).

Since no two residues from these distinct lists sum to 7 (mod 13),
x3 + y4 ̸≡ 7 (mod 13).

No solutions.
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The Decomposition Method The Modular Arithmetic Method Pell’s Type Equations

Pell’s Type Equations

Definition

A Pell’s type equation is a diophantine equation of the form
u2 − Dv2 = 1.

Theorem (Pell’s Type Equation Solutions)

The equation u2 − Dv2 = 1, where D is not a perfect square, has
infinitely many solutions given by:

un = 1
2

[
(u0 + v0

√
D)n + (u0 − v0

√
D)n

]
vn = 1

2
√
D

[
(u0 + v0

√
D)n − (u0 − v0

√
D)n

]
,

where (u0, v0) is the smallest nontrivial solution (“fundamental” solution).
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The Decomposition Method The Modular Arithmetic Method Pell’s Type Equations

Pell’s Type Equations

Example

Find all triangles having sidelengths consecutive integers and area also an
integer.

Sides: n − 1, n, n + 1

By Heron’s formula, Area =
√

s(s − a)(s − b)(s − c), where
s = a+b+c

2 , and a, b, c are the sidelengths.

=⇒ A =
n
√

3(n2−4)

4

If n were odd, A would not be an integer, so n = 2x .

We also need 3(n2 − 4) to be a perfect square, so n2 − 4 = 3z2.

=⇒ z is even, so z = 2y .

Then, 4x2 − 4 = 12y2, or x2 − 3y2 = 1.
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The Decomposition Method The Modular Arithmetic Method Pell’s Type Equations

Pell’s Type Equations

Example

Find all triangles having sidelengths consecutive integers and area also an
integer.

Apply the Pell’s equation formula to x2 − 3y2 = 1 with fundamental
solution (2, 1):

xn = 1
2

[
(2 +

√
3)n + (2−

√
3)n

]
yn = 1

2
√
3

[
(2 +

√
3)n − (2−

√
3)n

]
The sides are 2xn − 1, 2xn, 2xn + 1 and the areas are A = 3xnyn.
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