Solving Diophantine Equations

Aryan Mittal

Mentor: Nattakorn Kittisut Georgia Institute of Technology School of Mathematics

Spring 2023 Directed Reading Program

Topics Covered This Semester

Elementary Methods

- The Decomposition Method
- Solving Using Inequalities
- The Modular Arithmetic Method
- Inductive Methods
- Fermat's Method of Infinite Descent
- Some Classical Diophantine Equations
 - Linear Diophantine Equations
 - Pythagorean Triples and Related Problems
- Pell's Type Equations
 - History and Motivation
 - Deriving the Formula
 - Solving Using Elementary Methods

Topics Covered This Semester

• Elementary Methods

- The Decomposition Method
- Solving Using Inequalities
- The Modular Arithmetic Method
- Inductive Methods
- Fermat's Method of Infinite Descent
- Some Classical Diophantine Equations
 - Linear Diophantine Equations
 - Pythagorean Triples and Related Problems
- Pell's Type Equations
 - History and Motivation
 - Deriving the Formula
 - Solving Using Elementary Methods

Outline

What is a Diophantine Equation?

II Methods of Solving

I

Part I

What is a Diophantine Equation?

Definition (Diophantine Equation)

A *diophantine equation* is an equation whose only solutions of interest are integers.

Definition (Diophantine Equation)

A *diophantine equation* is an equation whose only solutions of interest are integers.

•
$$x^3 - y^3 = xy + 2$$

Definition (Diophantine Equation)

A *diophantine equation* is an equation whose only solutions of interest are integers.

•
$$x^3 - y^3 = xy + 2$$

•
$$x^n + y^n = z^n$$
, for some $n \in \mathbb{Z}^+$

Definition (Diophantine Equation)

A *diophantine equation* is an equation whose only solutions of interest are integers.

•
$$x^3 - y^3 = xy + 2$$

•
$$x^n + y^n = z^n$$
, for some $n \in \mathbb{Z}^+$

•
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{n}$$
, for some integer *n*

Definition (Diophantine Equation)

A *diophantine equation* is an equation whose only solutions of interest are integers.

•
$$x^3 - y^3 = xy + 2$$

•
$$x^n + y^n = z^n$$
, for some $n \in \mathbb{Z}^+$

•
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{n}$$
, for some integer *n*

•
$$u^2 - Dv^2 = 1$$
, for some integer D

Part II

Methods of Solving

The Modular Arithmetic Method

Methods of Solving

The Decomposition Method

The Modular Arithmetic Method

Pell's Type Equations

Solve in integers the equation
$$x^2 + 6xy + 8y^2 + 3x + 6y = 2$$
.

Example

Solve in integers the equation $x^2 + 6xy + 8y^2 + 3x + 6y = 2$.

We first factor:

$$x^2 + 6xy + 8y^2 + 3x + 6y$$

Example

Solve in integers the equation $x^2 + 6xy + 8y^2 + 3x + 6y = 2$.

We first factor:

$$x^{2} + 6xy + 8y^{2} + 3x + 6y$$

= $(x + 2y)(x + 4y) + 3(x + 2y)$

Example

Solve in integers the equation $x^2 + 6xy + 8y^2 + 3x + 6y = 2$.

We first factor:

$$x^{2} + 6xy + 8y^{2} + 3x + 6y$$

= $(x + 2y)(x + 4y) + 3(x + 2y)$
= $(x + 2y)(x + 4y + 3) = 2$

Example

Solve in integers the equation
$$x^2 + 6xy + 8y^2 + 3x + 6y = 2$$
.

We first factor:

$$x^{2} + 6xy + 8y^{2} + 3x + 6y$$

= $(x + 2y)(x + 4y) + 3(x + 2y)$
= $(x + 2y)(x + 4y + 3) = 2$

If 2 = ab, then (a, b) can be (1, 2), (2, 1), (-1, -2), or (-2, -1).

Example

Solve in integers the equation
$$x^2 + 6xy + 8y^2 + 3x + 6y = 2$$
.

We first factor:

$$x^{2} + 6xy + 8y^{2} + 3x + 6y$$

= $(x + 2y)(x + 4y) + 3(x + 2y)$
= $(x + 2y)(x + 4y + 3) = 2$

If 2 = ab, then (a, b) can be (1, 2), (2, 1), (-1, -2), or (-2, -1). We get four systems:

$$\begin{cases} x + 2y = 1 \\ x + 4y + 3 = 2 \end{cases}; \begin{cases} x + 2y = 2 \\ x + 4y + 3 = 1 \end{cases}$$
$$\begin{cases} x + 2y = -1 \\ x + 4y + 3 = -2 \end{cases}; \begin{cases} x + 2y = -2 \\ x + 4y + 3 = -1 \end{cases}$$

Example

Solve in integers the equation
$$x^2 + 6xy + 8y^2 + 3x + 6y = 2$$
.

We first factor:

$$x^{2} + 6xy + 8y^{2} + 3x + 6y$$

= $(x + 2y)(x + 4y) + 3(x + 2y)$
= $(x + 2y)(x + 4y + 3) = 2$

If 2 = ab, then (a, b) can be (1, 2), (2, 1), (-1, -2), or (-2, -1). We get four systems:

$$\begin{cases} x + 2y = 1 \\ x + 4y + 3 = 2 \end{cases}; \begin{cases} x + 2y = 2 \\ x + 4y + 3 = 1 \end{cases}$$
$$\begin{cases} x + 2y = -1 \\ x + 4y + 3 = -2 \end{cases}; \begin{cases} x + 2y = -2 \\ x + 4y + 3 = -1 \end{cases}$$
Solutions: {(3, -1), (6, -2), (3, -2), (0, -1)}.

Methods of Solving

2 The Modular Arithmetic Method

3 Pell's Type Equations

Example

Example

Solve in integers the equation $x^3 + y^4 = 7$.

• Consider the equation mod 13.

Example

- Consider the equation mod 13.
- Since $x^3 \mod 13 = (x \mod 13)^3 \mod 13$, it follows that $x^3 \equiv 0, 1, 5, 8, 12 \pmod{13}$.

Example

- Consider the equation mod 13.
- Since $x^3 \mod 13 = (x \mod 13)^3 \mod 13$, it follows that $x^3 \equiv 0, 1, 5, 8, 12 \pmod{13}$.
- Similarly, $y^4 \mod 14 = (y \mod 13)^4 \mod 13$, so $y^4 \equiv 0, 1, 3, 9 \pmod{13}$.

Example

- Consider the equation mod 13.
- Since $x^3 \mod 13 = (x \mod 13)^3 \mod 13$, it follows that $x^3 \equiv 0, 1, 5, 8, 12 \pmod{13}$.
- Similarly, $y^4 \mod 14 = (y \mod 13)^4 \mod 13$, so $y^4 \equiv 0, 1, 3, 9 \pmod{13}$.
- Since no two residues from these distinct lists sum to 7 (mod 13), $x^3 + y^4 \not\equiv 7 \pmod{13}$.

Example

Solve in integers the equation $x^3 + y^4 = 7$.

- Consider the equation mod 13.
- Since $x^3 \mod 13 = (x \mod 13)^3 \mod 13$, it follows that $x^3 \equiv 0, 1, 5, 8, 12 \pmod{13}$.
- Similarly, $y^4 \mod 14 = (y \mod 13)^4 \mod 13$, so $y^4 \equiv 0, 1, 3, 9 \pmod{13}$.
- Since no two residues from these distinct lists sum to 7 (mod 13), $x^3 + y^4 \not\equiv 7 \pmod{13}$.

No solutions.

Methods of Solving

- The Decomposition Method
- 2) The Modular Arithmetic Method
- Pell's Type Equations

Definition

A Pell's type equation is a diophantine equation of the form $u^2 - Dv^2 = 1$.

Definition

A Pell's type equation is a diophantine equation of the form $u^2 - Dv^2 = 1$.

Theorem (Pell's Type Equation Solutions)

The equation $u^2 - Dv^2 = 1$, where D is not a perfect square, has infinitely many solutions given by:

•
$$u_n = \frac{1}{2} \left[(u_0 + v_0 \sqrt{D})^n + (u_0 - v_0 \sqrt{D})^n \right]$$

• $v_n = \frac{1}{2\sqrt{D}} \left[(u_0 + v_0 \sqrt{D})^n - (u_0 - v_0 \sqrt{D})^n \right],$

where (u_0, v_0) is the smallest nontrivial solution ("fundamental" solution).

Example

Find all triangles having sidelengths consecutive integers and area also an integer.

Example

Find all triangles having sidelengths consecutive integers and area also an integer.

• Sides: n - 1, n, n + 1

Example

Find all triangles having sidelengths consecutive integers and area also an integer.

- Sides: n 1, n, n + 1
- By Heron's formula, Area = $\sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{a+b+c}{2}$, and a, b, c are the sidelengths.

Example

Find all triangles having sidelengths consecutive integers and area also an integer.

- Sides: n 1, n, n + 1
- By Heron's formula, Area = √s(s a)(s b)(s c), where s = a+b+c/2, and a, b, c are the sidelengths.
 ⇒ A = n√3(n²-4)/4

Example

Find all triangles having sidelengths consecutive integers and area also an integer.

- Sides: *n* − 1, *n*, *n* + 1
- By Heron's formula, Area = $\sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{a+b+c}{2}$, and a, b, c are the sidelengths.

•
$$\implies$$
 $A = \frac{n\sqrt{3(n^2-4)}}{4}$

• If *n* were odd, *A* would not be an integer, so n = 2x.

Example

Find all triangles having sidelengths consecutive integers and area also an integer.

- Sides: n 1, n, n + 1
- By Heron's formula, Area = $\sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{a+b+c}{2}$, and a, b, c are the sidelengths.

•
$$\implies$$
 $A = \frac{n\sqrt{3(n^2-4)}}{4}$

- If *n* were odd, *A* would not be an integer, so n = 2x.
- We also need $3(n^2 4)$ to be a perfect square, so $n^2 4 = 3z^2$.

Example

Find all triangles having sidelengths consecutive integers and area also an integer.

- Sides: n 1, n, n + 1
- By Heron's formula, Area = $\sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{a+b+c}{2}$, and a, b, c are the sidelengths.

•
$$\implies$$
 $A = \frac{n\sqrt{3(n^2-4)}}{4}$

- If *n* were odd, *A* would not be an integer, so n = 2x.
- We also need $3(n^2 4)$ to be a perfect square, so $n^2 4 = 3z^2$.

•
$$\implies$$
 z is even, so *z* = 2*y*.

Example

Find all triangles having sidelengths consecutive integers and area also an integer.

- Sides: n 1, n, n + 1
- By Heron's formula, Area = $\sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{a+b+c}{2}$, and a, b, c are the sidelengths.

•
$$\implies$$
 $A = \frac{n\sqrt{3(n^2-4)}}{4}$

- If *n* were odd, *A* would not be an integer, so n = 2x.
- We also need 3(n² − 4) to be a perfect square, so n² − 4 = 3z².
 ⇒ z is even, so z = 2y.
- Then, $4x^2 4 = 12y^2$, or $x^2 3y^2 = 1$.

Georgialnetitute

Example

Find all triangles having sidelengths consecutive integers and area also an integer.

Apply the Pell's equation formula to $x^2 - 3y^2 = 1$ with fundamental solution (2, 1):

Example

Find all triangles having sidelengths consecutive integers and area also an integer.

Apply the Pell's equation formula to $x^2 - 3y^2 = 1$ with fundamental solution (2, 1):

•
$$x_n = \frac{1}{2} \left[(2 + \sqrt{3})^n + (2 - \sqrt{3})^n \right]$$

•
$$y_n = \frac{1}{2\sqrt{3}} \left[(2 + \sqrt{3})^n - (2 - \sqrt{3})^n \right]$$

Example

Find all triangles having sidelengths consecutive integers and area also an integer.

Apply the Pell's equation formula to $x^2 - 3y^2 = 1$ with fundamental solution (2, 1):

•
$$x_n = \frac{1}{2} \left[(2 + \sqrt{3})^n + (2 - \sqrt{3})^n \right]$$

•
$$y_n = \frac{1}{2\sqrt{3}} \left[(2 + \sqrt{3})^n - (2 - \sqrt{3})^n \right]$$

The sides are $2x_n - 1$, $2x_n$, $2x_n + 1$ and the areas are $A = 3x_ny_n$.

References

Titu Andreescu and Dorin Andrica. An Introduction to Diophantine Equations. GIL Publishing House, 2002.

