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Part I

History
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Foundational Crisis of Mathematics

Establishing the Foundations of Math

300 BC: Euclid’s Elements
1874: Cantor’s set theory
1879: Frege’s Begriffsschrift

Russell’s Paradox: A Contradiction

S = {x | x /∈ x} (“The set of all sets that don’t contain themselves”)
Is S ∈ S?
Contradiction both ways!

New Field: Formal Logic

1910, 1912, 1914: Russell and Whitehead’s Principia Mathematica
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Hilbert’s Program

1 Completeness

Gödel’s First Incompleteness Theorem

2 Consistency

Gödel’s Second Incompleteness Theorem

3 Decidability

Turing’s Halting Problem
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Hilbert’s Program

1 Completeness

Gödel’s First Incompleteness Theorem

2 Consistency?
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Part II

Background and Definitions
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Formal Systems

Definition (Formal System)

A formal system is a system of axioms equipped with rules of inference,
which allow one to generate new theorems (e.g. ZFC).
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Fundamental Theorem of Arithmetic

Theorem (Fundamental Theorem of Arithmetic)

Every natural number has a unique prime factorization.
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Gödel Numberings

A Gödel numbering associates logical statements to unique natural
numbers.
To define this, first we map each mathematical symbol in our formal
system to a number.
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Gödel Numberings

Definition (Gödel Numbering Γ of a statement f = f1f2 . . . fn)

Γ(f ) =
n∏

i=1

p
N(fi )
i ,

where pi is the i th prime and N(fi ) is the number associated to symbol fi
by the chosen mapping.

Example

Consider the statement f = “0 = 0”.
We first map each symbol to a number to get < 1, 2, 1 >.
From here, we calculate the Gödel number as Γ(f ) = 213251 = 90.
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Gödel Numberings

Why convert statements to numbers?

To prove properties of formal systems via the known properties of
number theory

Associate each logical operation on statements f1 and f2 with an
arithmetic operation on Γ(f1) and Γ(f2)

Gödel proved the correctness of 46 of these numerical operations
Essentially created a computer to do math using number theory

For example, Sub corresponds to dividing out and multiplying in the
appropriate prime powers
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Common Notation

x Sub (u, y): within the statement associated with a number x ,
whenever you see a u substitute a y

p ⊢ A: p proves some statement A in the language of p
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The Statement The Proof

Part III

The 1st Incompleteness Theorem

1 The Statement

2 The Proof
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The Statement The Proof
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2 The Proof
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The Statement The Proof

The Statement

Theorem

There cannot exist a formal system capable of sufficient arithmetic (i.e.
not trivial) that is both consistent and complete.
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The Statement The Proof

The 1st Incompleteness Theorem

1 The Statement

2 The Proof
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The Statement The Proof

Proof Idea

Contradictions seem to arise from self-referential statements

E.g. “This statement is false”, set of all sets that don’t contain
themselves, etc.

Encode mathematical statements, then use the encoding recursively
to produce a self-referential statement

Can we produce a statement talking about its own provability?
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The Statement The Proof

The Proof

Consider the formula f (x) = ¬∃ p [ p ⊢ (x Sub (0, x)) ]

Here, f takes as input a Gödel number x of a statement.
“There does not exist a proof p such that p proves x substituted for
each instance of 0 with x .”

This formula has Gödel number Γ(f ).

Pass Γ(f ) in as input to f :

f (Γ(f )) = ¬∃ p [ p ⊢ (Γ(f ) Sub (0, Γ(f ))) ]

Simplify the inside Γ(f ) Sub (0, Γ(f )):

Γ(f ) Sub (0, Γ(f ))
= ¬∃ p [ p ⊢ (Γ(f ) Sub (0, Γ(f ))) ]
= f (Γ(f ))

Hence, f (Γ(f )) = ¬∃ p [ p ⊢ f (Γ(f )) ].
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The Statement The Proof

The Proof

If we name the statement g = f (Γ(f )) for ease, we have
g = ¬∃ p [ p ⊢ g ].

g says “There does not exist a proof p of g” ⇐⇒ “This statement
is unprovable”

If g is false, then there exists a proof of it, but that would make it
true, a contradiction.

g must be true and unprovable.
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The Statement The Proof

Notes on the Proof

Generally interpret this theorem to mean “Every consistent system
has unprovable true statements.”

Can’t just add unprovable statements as axioms
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The Statement The Proof

Part IV

The 2nd Incompleteness Theorem

3 The Statement

4 The Proof
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The Statement The Proof

The 2nd Incompleteness Theorem

3 The Statement

4 The Proof
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The Statement The Proof

The Statement

Theorem

Any formal system capable of sufficient arithmetic cannot prove its own
consistency.
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The Statement The Proof

The 2nd Incompleteness Theorem

3 The Statement

4 The Proof
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The Statement The Proof

The Proof

Assume (for contradiction) that there exists inside formal system F
a proof C of F ’s own consistency.

Recall our Gödel sentence g (“This statement is unprovable”) from
the proof of the first theorem.

The first theorem showed that if a system is consistent, then g is
unprovable within it.

By definition, C =⇒ [F is consistent].

But, by the first incompleteness theorem, [F is consistent] =⇒ g .

This is a proof of g , but g was already shown to be unprovable.

Hence, the mere existence of C , a proof of F ’s own consistency,
leads to a contradiction, so such a proof cannot exist.
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The Statement The Proof

Notes on the Proof

Why is g being true an issue/contradiction here, but not in the first
theorem?

A contradiction arises when g is proven.

The first theorem said “if F is consistent, then g is true.”

It doesn’t become a proof of g until you prove that F is consistent.
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Part V

Implications and Related Results
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Implications

Cannot create a system containing all truths and their proofs

No system can verify its own reliability
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Related Results in Consistency

Gentzen’s Consistency Proof

Proved the Peano Axioms are consistent
Proof relies on another system being consistent

Why can’t we prove ZFC’s consistency?

Almost all math expressible in ZFC
Need to step out of ZFC to prove something about it
Not enough math in systems stronger than ZFC
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Related Results in Unprovability

Statements can be true, false, or unprovable

Examples of proven unprovable claims

Paris-Harrington Theorem (first)
Kruskal’s Theorem
Goodstein’s Theorem

Continuum Hypothesis

We know |N| < |R|
Is there a set S such that |N| < |S| < |R|?
Unprovable within ZFC and truth value still unknown

A. Mittal and S. Khandaker Gödel’s Incompleteness Theorems 29



References

Kurt Gödel.
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